国铁集团:节后铁路春运累计发送旅客突破1亿人次******
中新网2月2日电 据中国国家铁路集团有限公司(以下简称国铁集团)消息,春节以来,铁路春运客流持续回升,1月22日至2月1日,全国铁路累计发送旅客1.02亿人次,同比增加3351万人次,增长48.7%,日均发送旅客931万人次,恢复至2019年春运同期的90%,其中1月26日至2月1日旅客发送量连续7天超千万人次,铁路运输安全平稳有序。
国铁集团客运部负责人介绍,节后春运,铁路部门更好统筹新阶段疫情防控和铁路春运重点工作,更好统筹发展和安全,全力以赴打好春运攻坚战,保障广大旅客平安、有序、温馨出行,努力让广大旅客春运体验更美好。
一是最大限度安排运力。根据客票预售情况和客票候补大数据,动态优化旅客列车开行方案,最大限度满足旅客返岗需求。针对成都、重庆、武汉、长沙、南宁、昆明至广州、深圳,哈尔滨至北京,兰州至乌鲁木齐等热门方向客流增加的情况,及时采取开行夜间高铁、动车组重联、增开临客、普速列车加挂车辆等多种措施,千方百计增加运力投放,节后日均开行旅客列车近9300列,比2019年同期增长了6.8%,全国铁路单日最高开行旅客列车10600余列,较2019年春运同期增长15%。同时,保持普速列车开行规模,开好公益性慢火车,努力满足旅客出行需求。
二是持续提升服务品质。针对节后四川、重庆、河南、湖南广西、陕西等地务工人员集中出行的情况,与地方政府、用工企业紧密联动,大力开行“点对点”务工专列,在进站、候车、检票、乘车等环节开辟专用通道和候车区域,提供全程服务,助力务工人员安全顺利返岗。加大餐饮、供水、保洁等旅途服务保障力度,继续落实好按年龄实行儿童优惠票、便捷中转换乘、网络订餐等便民利民惠民举措,加强老幼病残孕等重点旅客服务,持续提升旅客出行体验。优化旅客乘降组织,动态增加进出站通道数量,深入开展青年志愿者服务活动,强化与公交、地铁等市政交通接驳,打通旅客出行服务“最先一公里”和“最后一公里”。
三是保障健康安全出行。严格落实站车疫情防控措施,引导旅客有序分散进站候车,保持安全距离,做好站车通风消毒,积极推广无接触服务,加强旅行健康站车宣传提示,引导旅客全程佩戴口罩,加强自身健康防护,强化路地联防联控,有序做好应急处置工作,全力打造平安健康旅途。春节假期,国铁集团各级领导干部下沉春运一线,带领广大铁路职工加强调度指挥、线路巡查、设备检修等工作,积极应对大范围雨雪天气,有力保障了铁路春运安全和秩序。
该负责人指出,从目前铁路12306售票数据分析看,元宵节前后,务工流、学生流叠加,铁路春运客流仍将保持高位运行,部分地区客流高峰将超过2019年同期。铁路部门将根据客流需求,最大限度增加运力,加强旅客运输组织,科学有效应对大客流,在前期安排的基础上,日均再增加开行临客200余列。同时,提示广大旅客朋友,春运期间客流量大,请严格按照车票到发站乘车,加强自身健康防护,共同维护良好出行环境。在列车超员情况下,为保障运行安全,旅客列车将不办理旅客延长乘车服务,对于故意不按照票面到站下车,不符合继续乘车条件的旅客,列车工作人员将劝导其在就近的前方站下车。(中新财经)
科学家成功合成铹的第14个同位素******
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。
近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。
此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。
不断进行探索,再次合成铹同位素
铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。
质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。
103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。
截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。
目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。
通过熔合反应,形成新的原子核
铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。
“仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。
在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。
“如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
拓展新的领域,推动超重核理论研究
由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。
此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。
研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。
“此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)
(文图:赵筱尘 巫邓炎)